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Multiple reference active noise control (MRANC) has been applied to acoustical ®elds
with multiple noise sources to achieve low frequency noise reduction. The traditional
control con®guration feeds each reference signal into a di�erent control ®lter. This
con®guration has been widely adopted due to its potential performance in a general
multiple noise source environment. However, it entails the problem of ill conditioning
when the reference signals are correlated. In this paper time domain analysis has been
carried out to investigate the problem of ill conditioning for MRANC. To cope with the
problem of ill conditioning, a reference signal preprocessing step is added to the
conventional active noise control process. This preprocessing step essentially constructs a
new set of reference signals, which preserve all the information of the original reference,
but are uncorrelated with each other. An adaptive decorrelation ®lter based on the
Wiener ®lter theory and Gram±Schmidt orthogonalization theorem is constructed to
implement the reference signal preprocessing step. Experiments based on sound
transmission through a vibrating plate have been conducted and the results presented
are consistent with the theoretical analysis.
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1. INTRODUCTION

With the breathtaking advance of digital signal processing (DSP) technology and ever-
increasing parallelism for real-time computation, complex feedforward active noise
control (ANC) systems with multiple reference, multiple actuator and multiple error
have been built. These complex ANC systems make noise reduction possible not only in
single noise source one-dimensional acoustical ®elds, but in multiple noise source three-
dimensional acoustical ®elds as well. When an ANC system is applied to a three-
dimensional acoustical ®eld, it is usually required to use multiple actuator and multiple
error sensor to achieve spatial noise reduction [1].

In addition, to achieve noise reduction in a multiple noise source environment, it is
usually required to use an array of reference sensors to generate a complete set of
reference signals [2] so that the desired multiple coherence function can be obtained. A
previous companion paper [3] studied the behavior of conventional and simpli®ed
multiple reference active noise control (MRANC) systems using frequency domain
analysis and simulation. It was found that good performance in terms of noise reduction
could be achieved with the conventional con®guration, and a simpli®ed con®guration is
possible under some special circumstances. Over the years, many different schemes and
devices have been investigated in an effort to minimize the number of reference sensors

Journal of Sound and Vibration (2000) 233(5), 761±774
doi:10.1006 jsvi.1998.2076, available online at http://www.idealibrary.com on



762 Y. TU AND C. R. FULLER

while achieving maximum noise reduction. It has also been realized that, if the reference
signals are correlated, the MRANC system may become ill conditioned which usually
results in a slow convergence rate and high sensitivity of noise attenuation to the
measurement contamination.

A method to increase the convergence speed by using decorrelators for a MRANC
system was proposed by Masato et al. [4]. The effectiveness of the proposed
decorrelators to increase convergence speed is strongly affected by the characteristics of
the reference signal correlation. In a general situation, the proposed decorrelators deliver
poor results. Studies on adaptive noise cancellation, in which the cancellation is focused
on electrical signals rather than acoustical waves, have shown that the reference signal
coupling in a multiple noise source environment degrades the control performance. A
decoupling method was proposed to produce a new set of reference signals [5]. Parallel
adaptive ®lter structures along with sub-band approaches have also been applied to
adaptive noise cancellation. The results are shown to improve the ability to track non-
stationary noise process [6]. Recently, attention has been paid to the convergence rate as
well as the number of control coef®cients for reference sensor selection [7] in a multiple
noise source environment.

The previous studies on MRANC are mainly focused on noise source identi®cation
and reference sensor selection. An important issue remains unsolved, i.e., when reference
signals are correlated, the ANC system becomes ill-conditioned. An ill-conditioned
system usually results in slow convergence rate and high sensitivity of noise attenuation
to measurement contamination. In this paper, the problem of ill conditioning has been
analytically studied using a time domain analysis. A reference signal preprocessing step
using adaptive decorrelation ®lters is proposed and investigated using simulations and
experiments. It is shown that the preprocessing step signi®cantly improves the
performance of the MRANC system when the reference signals are correlated.

2. TIME DOMAIN ANALYSIS

Figure 1 shows a typical MRANC system, in which there are M noise sources, K
reference sensors, one secondary source and one error sensor. Each reference signal is
fed into a different ®lter and the output of each ®lter is summed together to drive a
single secondary source. This structure for processing reference signals attempts to
control the primary noise from multiple primary paths with the secondary noise from
multiple ®lters, thus it enjoys the applicability in general situations and has been adopted
by most previous studies [2, 8]. Since the number of the secondary sources and error
sensors is chosen to be unity to simplify the analysis, the spatial noise reduction effect is
not a concern in this paper.

Usually, reference signals are obtained through various sensors, and each reference
sensor may pick up signals from several noise sources passing through different paths, as
shown in Figure 2. As a result, the reference signals may be correlated with each other.
The correlated part of these reference signals represents the common input to different
®lters, which in turn generates the correlated outputs. The error signal at step k can be
written as

e�k� � d�k� � u�k�T�z�, �1�
where T(z) is the Z transform of the error path. Here, no assumption is made about the
structure of T(z), it could be in the form of either IIR or FIR ®lters, and u(k) is the
summation of all the ®lter outputs, given by
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u�k� �
XK
i�1

xTi �k�wi �
XK
i�1

wT
i xi�k�, �2�

where wi and xi(k) are the weight vector and the tapped input vector for the ith ®lter,
respectively. Suppose the ®lter length is N, then

wi � �w0,i w1,i w2,i � � �wNÿ1,i�T, �3�
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Figure 1. Multiple reference multiple input (MRMI) system.
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xi�k� � �xi�k�xi�kÿ 1� xi�kÿ 2� � � � xi�kÿN� 1��T: �4�
Substituting equation (2) into equation (1) yields

e�k� � d�k� �
XK
i�1

wT
i �k�T�z�: �5�

De®ning the ®ltered reference signal as

x̂1�k� � xi�k�T�z�, �6�
the error signal can be rewritten as

e�k� � d�k� �WTX̂�k�, �7�
where W is a K6N vector formed by putting together all the control ®lter weight

vectors and X̂(k) is another K6N vector formed by putting together all the reference

signal vectors, i.e.,

W � �wT
1 wT

2 � � �wT
k �T, X̂�k� � �x̂T1 �k�xT2 �k� � � � x̂Tk �k��T: �8, 9�

The cost function is constructed as the mean square error signal, i.e.,

x � E�e2�k��: �10�
Substituting equation (5) into equation (10), the gradient of the cost function with

respect to the weight vector is obtained as

r � @x
@W
� 2E e�k� @e�k�

@W

� �
� 2E�d�k�X̂�k�� � 2E�X̂�k�X̂T�k��W:

Setting the gradient to zero, the optimum weight vector is obtained by solving the norm

equation

RWopt � ÿP, �11�
where

R � E

x̂1�k�x̂T1 �k� x̂1�k�x̂T2 �k� � � � x̂1�k�x̂Tk �k�
x̂2�k�x̂T1 �k� x̂2�k�x̂T2 �k� � � � x̂2�k�x̂Tk �k�

..

. ..
. ..

. ..
.

x̂k�k�x̂T1 �k� x̂k�k�x̂T2 �k� � � � x̂k�k�x̂Tk �k�

0BBBB@
1CCCCA, P � E

x̂1�k�d�k�
x̂2�k�d�k�

..

.

x̂k�k�d�k�

0BBBB@
1CCCCA:

�12, 13�
Each term inside the above R matrix is a sub-matrix, and the matrix R is real, symmetric

and non-negative de®nite just like the R matrix in a single reference ANC system.

Therefore, the corresponding eigenvalues of the R matrix are also non-negative and real.

The characteristics of the R matrix are determined by the auto-correlation and cross-

correlation functions of the ®ltered reference signals. If all the reference signals are

uncorrelated with each other, every off-diagonal terms in the R matrix will be zero and

every optimum weight vector, w1, w2, . . . and wk, are uncoupled. On the other hand, if

the reference signals are correlated, the condition number [9] of the R matrix may

become large, which implies that the MRANC system is ill-conditioned. This problem
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may become more prominent when each reference signal is orthogonal. In this case, the
auto-correlation matrices inside the R matrix are diagonal, and the condition number of
the R matrix is determined by only the cross-correlation functions of the ®ltered
reference signals.

It is very important to understand perturbation theory [9] and its impact on the
development of an algorithm to solve the norm equation (11). The perturbation theory
states that if the matrix R and the vector P are perturbed by small amounts dR and dP,
respectively, and if the relative perturbations, ||dR||/||R|| and ||dP||/||P||, are both on the
same order of e, where e51, then

jjdWjj
jjWjj E ew�R�, �14�

where dW is the change of weight vector W as a result of the perturbation from the
matrix R and the vector P, and w(R) is the condition number of the matrix R, and || � || is
the norm operator [10]. The condition number describes the ill condition of a matrix.
Since the matrix R is real and symmetric, it can be shown [6] that the condition number
equals

w�R� � lmax=lmin, �15�
where lmax and lmin are the maximum and minimum eigenvalues of the matrix R,
respectively. This ratio is also commonly referred to as eigenvalue spread.

The perturbation theory states that if there are some errors in the matrix R or the
vector P caused by measurement or some other factors, the ill condition of the
correlation matrix R may lead to a weight vector solution W which is far from the
optimum Wiener solution Wopt due to the problem of ill condition. In other words, the
ill condition of the correlation matrix R causes the optimum Wiener vector to be very
sensitive to various kinds of measurement contamination. The measurement
contamination may result from A/D and D/A conversion, transducer error, ®nite
precision error, non-linearity, etc.

On the other hand, the eigenvalue spread of the matrix R has a signi®cant impact on
the convergence rate of an ANC system, especially when the LMS based algorithm is
applied [2]. An important factor that determines the eigenvalue spread is the cross-
correlation among the reference signals. The cross-correlation becomes even more
dominant when each reference is an orthogonal signal. In particular, if the reference
signal xi is correlated with the reference signal xj, the ith and jth columns in the R matrix
will exhibit some similarities, which results in large eigenvalue spread. Upon the extreme
circumstance that any two reference signals are the same, the determinant of the matrix
R becomes zero, and the eigenvalue spread approaches in®nity. In this case, the ill-
conditioned system deteriorates to an underdetermined system since the solution to the
ANC system is not unique.

3. PREPROCESSING OF REFERENCE SIGNALS

As discussed in the last section, it is desirable to have uncorrelated reference signals.
In the present work, this is achieved with an additional reference preprocessing stage
right before feeding the reference signals into controllers. The preprocessing constructs a
new set of reference signals, which preserve all the information of the original reference
signals, but are uncorrelated with each other. Such a step essentially causes all the off-
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diagonal blocks in the R matrix to be zero, thus eliminating the ill-conditioning problem
due to the cross-correlation among reference signals.

According to the orthogonal theorem of adaptive ®lter theory, when an adaptive ®lter
shown in Figure 3 is running as an optimum Wiener ®lter, the error signal is
uncorrelated with the reference signal, i.e.,

E�x�kÿ i�e�k��w�wopt
� 0, i � 0, 1, 2, � � �Mÿ 1, �16�

where x is the reference signal, e is the error signals, and M is the number of ®lter
coef®cients. Based on the orthogonal theorem, adaptive decorrelation ®lters can be
constructed as shown in Figure 4, in which two correlated reference signals are processed
by a couple of adaptive ®lters to generate two uncorrelated reference signals. For the
upper ®lter A, the reference signal is �x1, and the error signal is �x2. Thus, the orthogonal
relationship is expressed as

E��x1�kÿ i��x2�k��A�Aopt
� 0, i � 0, 1, 2, � � �Mÿ 1, �17�

where M is the number of ®lter coef®cients corresponding to ®lter A. For the lower ®lter
B, the reference signal is �x2, and the error signal is �x1. Thus, the orthogonal relationship
is expressed as

E��x2�kÿ i��x1�k��B�Bopt
� 0, i � 0, 1, 2, � � �Mÿ 1, �18�

where M is the number of ®lter coef®cients corresponding to ®lter B. It is important to
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Figure 3. An adaptive transversal ®lter.
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Figure 4. An adaptive decorrelation ®lter.
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note that the degree of decorrelation between the reference signal and the error signal
depends on the number of ®lter coef®cients. Ideally, an in®nite number of ®lter

coef®cients is needed to decorrelate the two reference signals. However, since the

objective of applying decorrelation ®lters is to diagonalize the matrix R, it is easy to

show that the two transversal ®lters in the decorrelation ®lters should have the same

number of coef®cients, and the number of coef®cients M should be the same as the

number of the control ®lter coef®cients.

It should be noted that the ®rst two coef®cients a0 and b0 in the ®lters A and B are

redundant, since both of them are trying to achieve

E��x2�k��x1�k�� � 0: �19�
This is an over-determined case, which gives in®nite solutions to a0 and b0. A practical

approach is to force either a0 or b0 to be zero. Using the LMS algorithm and assuming

that ®rst coef®cient b0 is set to be zero, the uncorrelated reference signals �x1 and �x2 can

be obtained as

�x1�k� � x1�k� �
XM
i�1

�x2�kÿ i�bi�k�, i � 1, 2, � � �Mÿ 1, �20�

bi�k� 1� � bi�k� ÿ m�x2�kÿ i��x1�k�, i � 1, 2, � � �Mÿ 1, �21�

�x2�k� � x2�k� �
XM
i�0

�x1�kÿ i�ai�k�, i � 0, 1, 2, � � �Mÿ 1, �22�

ai�k� 1� � ai�k� ÿ m�x1�kÿ i��x2�k�, i � 0, 1, 2, � � �Mÿ 1: �23�
The above decorrelation techniques have been reported to achieve signal separation and

restoration of the original signals [11, 12]. In these applications, assumptions on the

relationship between source signals and input signals have to be made, and also required

are some assumptions on the statistical properties of source signals. In the preprocessing,

the reference signals are assumed to be wide sense stationary, however, the relationship

between noise sources and reference signals is not important. In order to obtain K

unrelated reference signals, the Gram±Schmidt process is applied to the reference signals.
Firstly, the reference signals x1 and x2 are decorrelated through ®lters A21 and B21. Then

the reference signal x3 is decorrelated with both x2 and x1. Finally, the reference signal

xk is decorrelated with all the previous reference signals x1, x2, . . . , xkÿ1 through two sets

of ®lters Ak1, Ak2, . . . , Ak(kÿ1), and Bk1, Bk2, . . . , Bk(kÿ1). The decorrelation structure for

K reference signals is shown in Figure 5. A disadvantage of this structure is that the

computation load increases squarely with the increasing number of reference signals,

which justi®es its application only when the number of reference signals is relatively

small.

The correlation matrix �R of decorrelated reference signals is generally not strictly

diagonal, but block-diagonal, since each term inside the matrix is a sub-matrix.

Although the eigenvalue spread is generally smaller after the preprocessing with the

decorrelation ®lters, it is not guaranteed at every situation. In particular, if the cross-

correlation terms are much smaller than the auto-correlation terms in the matrix R, the

decorrelation preprocess may not improve eigenvalue spread at all. However, if each
reference signal itself is orthogonal, which implies that each diagonal sub-matrix inside

the matrix �R is diagonal, the decorrelation process will de®nitely improve the eigenvalue
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spread. A potential approach to achieve this is to combine the decorrelation process with
lattice structure based FIR ®lters [13, 14] or frequency-domain block algorithm [15, 16].

4. EXPERIMENTAL SETUP

As shown in Figure 6, there are two disturbance sources, one secondary source and
one error microphone for the plate system. With the dimension of 0�381 m long and
0�305 m wide, the plate is mounted in a heavy steel frame, which produces negligible
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Figure 5. Decorrelation Filter Structure for K reference signals.
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Figure 6. Experimental set-up.
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rotation and displacement of the boundary, approximating clamped boundary
conditions. The steel frame is further mounted in a rigid wall with one side facing
toward a reverberation chamber and the other side toward an anechoic chamber. The
plate is excited by two distinctive noise sources; one is the acoustical disturbance from a
large speaker, while the other is the structural disturbance from a piezoelectric ceramic
transducer (PZT #1) mounted on the plate. The secondary control source acting on the
plate is another piezoelectric actuator (PZT #2). The positions of both of the PZTs are
selected such that any plate mode of order (4,4) or less can be excited. The error sensor
is a microphone located in the direction approximately perpendicular to the center of the
plate, but slightly off the center such that the even modes of the plate have relatively
small noise contribution, but are still observable and controllable. The goal of the
control is to minimize the total radiated sound at the error microphone. The two
particular noise sources are chosen in an effort to simulate what happens in an aircraft
cabin, which may generate interior noise due to directly applied structural forces as well
as acoustical pressure ¯uctuations acting on it from the exterior.

The block diagram showing the various elements for the experiments is presented in
Figure 7. The heart of the system is a TMS320C301 DSP board, which is used to
implement the preprocessing and control algorithms. The A/D and D/A conversions are
carried out through two additional I/O boards, which provide 32 input channels and 16
output channels. The DSP board along with two associated I/O boards are plugged into
a PC. A graphical user interface (GUI) running under the host PC is provided to adjust
various control parameters and display DSP data. Since the disturbance signals
generated within the DSP are digital in nature, they are transformed into analog signals
through D/A converters to drive the primary noise sources (speaker and PZT #1).
Similarly, the control signal is also transformed into analog signal through D/A
converters to drive the secondary source (PZT #2). Since the frequency range for the
experiments is selected to be below 400 Hz, all the signals are low-pass ®ltered so that
the frequency components above 400 Hz are negligible in order to avoid alias. In
addition, since the signals generated within the DSP have very small power, in order to

Power amp.

LP filters Power amp.

Structural disturb.

Acoustical disturb.
Ctrl. signal

Error signal

LP filters

Power amp.

LP filters

BP filter

D/A

DSP(TMS320 C30)
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Figure 7. Block diagram of the various elements for the experiments.
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drive the speaker and PZTs, they are also fed into power ampli®ers. It should be noted
that the signal from the error microphone is fed into a high-pass ®lter to eliminate the dc
signal drift.

The controller is based on adaptive FIR ®lters, and the number of coef®cients for
each FIR ®lter is selected to be 128. The error path between the secondary source (PZT
#2) and the error sensor is also modelled with a FIR ®lter, and the same number of
coef®cients is used. The frequency range of the noise ®eld is selected to be below 400 Hz.
These parameters are selected based on the computational limit of the DSP, since
increasing the frequency range generally requires more ®lter coef®cients to get
satisfactory results, which in turn requires more computations.

Two random signal generators were used to produce two independent noise sources,
and the reference signals were obtained indirectly from the two noise sources. The
relationship between the reference signals and the noise sources is shown in Figure 8.
The ®rst reference signal r1 is exactly the same as the ®rst noise source signal n1. The
second reference signal r2 is the combination of the second noise source n2 and the ®rst
noise source n1 ®ltered through a band-pass ®lter, that is

r1�k� � n1�k�, r2�k� � C�0n2�k� � n1�k�H�Z�, �24, 25�
where C0 is a constant. The two uncorrelated noise source signals, n1 and n2, are
uniformly distributed between ÿ1 and 1. The cut-off frequencies for the band pass ®lter
H(z) are selected to be 160 and 320 Hz. A FIR ®lter with four coef®cients is used here to
implement the band pass ®lter. The windowing method is adopted to design the band
pass FIR ®lter and the resultant four-coef®cient vector is {ÿ1�009, 6�875, 6�875, ÿ1�009}.
Thus, the two reference signals in equations (22) and (23) are correlated due to the
common contributions from noise source n1, and their correlation function can be varied
if a different constant C0 is selected. The decorrelation ®lters are implemented with ®xed
Wiener ®lters instead of adaptive ®lters since the correlation between the reference
signals is time invariant. In this particular case, the requirement for the decorrelation
®lter is to remove the component in the reference signal r2, which is correlated with the
reference signal r1. The decorrelation ®lter corresponding to Figure 4 is simply calculated

Reference sensor r1

Noise source n1

Noise source n2

C0

H(z)

Reference sensor r2

Figure 8. Noise sources and reference sensors.
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with the coef®cient vector A as {1�025, ÿ6�888, ÿ6�863, 1�003}, and the coef®cient vector
B as a zero vector.

Corresponding to each selected constant C0, computations are carried out to obtain
the correlation matrix R for the reference signals, the decorrelated reference signals, the
®ltered reference signals, and the decorrelated ®ltered reference signals. Based on the
correlation matrix, the corresponding eigenvalue spread is also computed and the results
are shown in Table 1. Theoretically, the eigenvalue spread after decorrelation processing
should be the same for every C0. However, since the expectation value inside the
correlation matrix R is estimated using 4096 samples, the calculated eigenvalue spread is
slightly different from the theoretical value. It is clear that the eigenvalue spread of the
reference signals is smaller after it is processed through the decorrelation ®lter. In fact,
the convergence speed is determined by the ®ltered reference signals instead of the
reference signals for the Filtered-X LMS (FXLMS) algorithm. Thus, in order to improve
the convergence speed, the eigenvalue spread for the ®ltered reference signals must get
smaller as well. This requirement is indeed satis®ed since, although decorrelation is only
applied to the reference signals, the correlation between ®ltered reference signals is also
affected. It is also interesting to note that the eigenvalue spread for the ®ltered reference
signals is much larger than that for the reference signals. Such a result can be intuitively
viewed from the perspective of a three-dimensional performance surface: the reference
signal corresponds to a half-egg-shaped surface, but the error path essentially stretches
this performance surface into a very narrow strip resulting in a large eigenvalue spread
for the ®ltered reference signal.

5. EXPERIMENTAL RESULTS

If the reference signals are preprocessed through the decorrelation ®lter, then the
FXLMS algorithm is referred to as the DFXLMS algorithm. In order to examine the
effect of the decorrelation ®lter on improving the convergence speed, the conventional
FXLMS algorithm was ®rst applied. After letting the controller weight vectors converge
for 30 s, the convergence process was frozen. Then the power spectral density of the
error signal was measured. Next, the DFXLMS algorithm was also applied, the power
spectral density of the error signal was also measured after 30 s of convergence time.
The results, shown in Figure 9, indicate that 9�0 dB noise reduction was achieved with
the DFXLMS algorithm, while only 5�3 dB noise reduction was achieved with the
conventional FXLMS algorithm.

In order to measure the learning curve, the convergence process of the FXLMS
algorithm or the DFXLMS algorithm was started with a small convergence parameter,
and values of the error signal power at 5, 10, 15, 25 . . . and 360 s were measured. These
values representing the power of the error signal form the learning curves, as shown in

TABLE 1

Eigenvalue spread versus correlation

Reference Reference Filtered reference Filtered
signals without signals with without reference with

C0 decorrelation decorrelation decorrelation decorrelation

1�0 17�7 3�2 8�46 106 2�36 105

0�5 48�2 3�4 2�96 106 3�16105

0�2 242�5 3�0 1�16 107 2�26 105



772 Y. TU AND C. R. FULLER

Figure 10. The results indicate that the DFXLMS algorithm converges about three times
faster than the FXLMS algorithm and the improvement of the convergence speed is in
the same magnitude as the improvement of the corresponding eigenvalue spread. It is
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interesting to note that the error signal power for the DFXLMS is still larger than that
for the FXLMS algorithm after 360 s. This is mainly due to the very long convergence
time needed for the error signals to reach steady state. However, various measurement
errors or distortions (e.g., A/D and D/A conversion, non-linearity, ®nite precision)
introduced in the experiment may also play a role since a larger condition number
causes control performance to be more sensitive to those measurement distortions.

In order to investigate the impact of measurement errors, a simulation based on the
same experimental set-up was carried out using the approach outlined in the companion
paper. The frequency response functions of the two primary paths (from the speaker
through the plate to the error microphone and from the PZT #1 to the error
microphone) and one error path (from the PZT #2 to the error microphone) were
measured with a B&K 2032 digital signal analyzer. The frequency response functions
were ®tted with FIR ®lters using the least square method [17]. Based on the FIR models,
the learning curves of the two algorithms can be obtained through calculation. The
results, shown in Figure 11, show the same tendency that the convergence speed of the
DFXLMS algorithm is about three times as fast as that of the traditional FXLMS
algorithm. However, after 6 min of convergence, the power of the error signal with the
DFXLMS algorithm is very close to that with the FXLMS algorithm. Since the
simulation is free from various measurement errors and noise caused by A/D, D/A
converters, transducers, non-linear behaviour and many other ANC elements, the
simulation results of Figure 11, when compared to the corresponding experimental
results of Figure 10, tend to suggest that the DFXLMS algorithm has improved
attenuation when there is distortion of the measured signals. This aspect, which for
brevity is not investigated in detail in the present paper, will be the topic of a future
investigation.
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Figure 11. Comparison of learning curves based on simulation: Ð, without decorrelation ®lter; ±±±, with
decorrelation ®lter.
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6. CONCLUSION

The optimum solution of a multiple reference feedforward active noise control system
has been obtained in the time domain. It was particularly noted that if the reference
signals are correlated, the corresponding system would be ill-conditioned, which results
in slow convergence speed and high sensitivity to measurement errors. A decorrelation
approach has been constructed for preprocessing reference signals based on the Wiener
®lter theory and Gram±Schmidt orthogonalization theorem. Experiments based on
sound transmission through a vibrating plate have been conducted, and the results
demonstrate the effectiveness of the decorrelation approach to improve both the
convergence speed and steady state error.
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